ASN's Mission

To create a world without kidney diseases, the ASN Alliance for Kidney Health elevates care by educating and informing, driving breakthroughs and innovation, and advocating for policies that create transformative changes in kidney medicine throughout the world.

learn more

Contact ASN

1401 H St, NW, Ste 900, Washington, DC 20005

email@asn-online.org

202-640-4660

The Latest on X

Kidney Week

Abstract: FR-PO273

Set7 Methyltransferase and Phenotypic Switch in Diabetic Glomerular Endothelial Cells

Session Information

Category: Diabetic Kidney Disease

  • 701 Diabetic Kidney Disease: Basic

Author

  • El-Osta, Sam, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
Background

Hyperglycemia influences the development of glomerular endothelial cell damage, and nowhere is this more evident than in the progression of diabetic kidney disease (DKD). While the Set7 lysine methyltransferase is a known hyperglycemic sensor, its role in endothelial cell function in the context of DKD remains poorly understood.

Methods

Single-cell transcriptomics was used to investigate Set7 regulation in a mouse model of DKD, followed by validation of findings using pharmacological and short hairpin RNA inhibition inhibition of Set7.

Results

Set7 knockout (Set7KO) improved glomerular structure and albuminuria in a mouse model of diabetes. Analysis of single-cell RNA-sequencing data showed dynamic transcriptional changes in diabetic renal cells. Set7KO controls phenotype switching of glomerular endothelial cell populations by transcriptional regulation of the insulin growth factor binding protein 5 (IGFBP5). Chromatin immunoprecipitation assays confirmed that the expression of the IGFBP5 gene was associated with mono- and dimethylation of histone H3 lysine 4 (H3K4me1/2). This generalizability was investigated in human kidney and circulating hyperglycemic cells exposed to TGFβ1. We showed that the highly selective Set7 inhibitor (R)-PFI-2 hydrochloride attenuated indices associated with renal cell damage and mesenchymal transition, specifically (1) reactive oxygen species production, (2) IGFBP5 gene regulation, and (3) expression of mesenchymal markers. Furthermore, renal benefit observed in Set7KO diabetic mice closely corresponded in human glomerular endothelial cells with (R)-PFI-2 hydrochloride inhibition or Set7 short hairpin RNA silencing.

Conclusion

Set7 regulates the phenotypic endothelial–mesenchymal transition switch and suggests that targeting the lysine methyltransferase could protect glomerular cell injury in DKD.