Abstract: SA-PO025
Coaxial Printing of Convoluted Proximal Tubule for Kidney Disease Modeling
Session Information
- Bioengineering
November 05, 2022 | Location: Exhibit Hall, Orange County Convention Center‚ West Building
Abstract Time: 10:00 AM - 12:00 PM
Category: Bioengineering
- 300 Bioengineering
Authors
- Masereeuw, Rosalinde, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- van Genderen, Anne Metje, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Garcia valverde, Marta, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Capendale, Pamela Elaine, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Kersten, Maj Valerie, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Sendino Garví, Elena, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Jansen, Jitske, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Mihaila, Silvia M., Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Vermonden, Tina, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
- Zhang, Y. Shrike S., Harvard Medical School, Boston, Massachusetts, United States
Background
Genetic defects in proximal tubule (PT) transporters can lead to metabolic complications and tubulopathies. To mechanistically study these pathologies, 3D (bio)printing offers new modeling alternatives to in vivo by incorporating cell-extracellular matrix (ECM) interactions. Here, we applied co-axial printing to create a convoluted channel within a gelatin-based microfiber to model the convoluted structure of the PT and address the ECM-cells interaction in a disease model. For this, we included a cystinosin-deficient (CTNS-/-) cell line to model cystinosis, a currently uncurable kidney tubulopathy.
Methods
A 3D printing system consisting of syringe pumps, heaters, coaxial needles, and a silicon holder was designed. Fine-tuning of the gelatin/alginate-based ink composition, printing temperature and feeding rate allowed an optimal ink viscosity. CaCl2 and microbial transglutaminase were used to stabilize the ink. Healthy conditionally immortalized PTECs (ciPTEC), and isogenic CTNS-/- cells were seeded to mimic two genotypes. Immunofluorescent stainings for cytoskeleton organization (F-actin), polarization markers (a-tubulin, Na+K+-ATPase), ECM-production (collagen IV), and barrier-formation (inulin-FITC leakage) were performed to evaluate the performance of the engineered PT.
Results
The printed microfibers (length:>50cm, OD:1.5mm, ID:150μm) exhibited prolonged structural stability (42 days) and cytocompatibility in culture. All cells showed homogenous cytoskeleton organization upon 14 days of culture in the microfibers, as indicated by F-actin directionality measurements, barrier-formation and polarization with the apical marker a-tubulin and the basolateral marker Na+K+-ATPase. Cell viability was slightly impaired (60%, p=0.028) in cystinotic cells upon prolonged culturing for 14 days. Finally, CTNS-/- cells showed reduced apical transport activity by two efflux pumps, viz. breast cancer resistance protein and multidrug resistance-associated protein 4 (p<0.0001).
Conclusion
Our novel printing device showed potential to mimic a 3D environment compatible with healthy PT and tubulopathy modeling. By further improving this setup, new insights in kidney disease development and progression can be gained. This eventually aids in new treatment options.
Funding
- Private Foundation Support